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1. Introduction 

With its compact form factor, portability, low power consumption, and increasing 
processing power, the Android mobile platform is gaining popularity as a 
replacement for traditional desktop or laptop computers as a processing platform. 
Most digital signal processing algorithms developed at the US Army Research 
Laboratory are written in the C programming language to provide sufficient 
processing power to satisfy typical processing and performance requirements. 
Typical applications developed for the Android mobile platform are written in 
Java. Therefore, to achieve maximum speed, there is a need to bridge Java-based 
applications to native C applications. Fortunately, a combination of the Android 
Native Development Kit (NDK) and the Java Native Interface (JNI) provides such 
a mechanism.  

NDK is a toolset that allows users to build C/C++ functions into a static or 
dynamic library or let the existing prebuilt library be called from an Android 
application. JNI defines a way for managed code written in Java to interact with 
native C/C++.  

This guide is intended to take programmers through adding an NDK package into 
an Android Studio Integrated Development Environment (IDE), to building a 
simple Android application that calls a C function to add 2 integer values received 
from the user screen. 

2. Android Studio IDE 

This guide assumes the user has already downloaded the Android Studio IDE and 
has an extensive working knowledge of this development package. As of the 
writing of this report, the version of Android Studio IDE was 1.5.1. 

3. Android NDK Package 

The Android NDK package can be downloaded via either of the following 
methods. 

3.1 Method 1 

The latest version of the NDK package for one’s operating system can be 
downloaded directly from “developer.android.com/ndk/downloads/index.html”. 

Expand the package once it has downloaded.  
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3.2 Method 2 

Download the NDK package directly from Android Studio IDE: 

1) Select the “Tools” tab. 

2) Select “Android->SDK manager”. 

3) Select “Appearance->System Settings->Android SDK”. 

4) Select the “SDK Tools” tab. 

5) Check the box labeled “Android NDK”. 

6) Select “Apply”. 

Wait for the package to be added into the Android Studio IDE. The downloaded 
package can be found at “~/Library/Android/sdk/ndk-bundle”. 

4. Configure NDK with Android Studio IDE 1.5.1  

Perform the following steps to configure the NDK with Android Studio IDE, 
version 1.5.1: 

1) Set up the Android NDK location: 

a) Select “File->Project Structure”. 

b) Select “SDK Location”. 

c) If Method 1 was chosen, enter the NDK location of where the 
downloaded NDK package was expanded. If Method 2 was chosen, 
then Android Studio will automatically fill in the NDK location. 

2) Add the JAVAH, NDK-BUILD, and NDK-BUILD CLEAN paths:  

JAVAH is a tool provided by Java SE to generate a C header and the 
source files that are needed to implement native methods. Refer to 
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javah.html 
for a detailed description. 

3) Configure the JAVAH path: 

a) Select “Tools->Android->SDK Manager”. 

b) Select “Tools->External Tools”. 

c) Select “+” at the bottom of the right pane. 

d) The “Create Tool” window (Fig. 1) will pop up. 
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Fig. 1 Create Tool window 

e) Enter the following to create a path for “javah”, as shown in Fig. 2. 

 

Fig. 2 “Javah” path 
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Notes:   

• Program: This needs to point to where the JAVAH application is located 
on the host. 

• Parameters: The parameters are set to -classpath $Classpath$ -v –jni 
$FileClass$ 

o -classpath specifies the path for “javah” to look for  
                       classes 

o -v verbose 

o -jni tells “javah” to create an output file with JNI-style  
                       native method function prototypes  

• Working directory: All the required files needed to create a C callable 
object are located in the “jni” directory. 

NDK-BUILD is a shell script used to call a GNU “make” 3.81 or later. Use 
the following steps to configure it: 

1) Configure the NDK-BUILD path: 

a) Select “Tools->Android->SDK Manager”. 

b) Select “Tools->External Tools. 

c) Select “+” at the bottom of the right pane. 

d) The “Create Tool” window (see Fig. 1) will pop up. 

e) Enter the following to create an environment path for NDK-BUILD, as 
shown in Fig. 3: 

• Program: This points to the location to where NDK-BUILD is 
located. 

• Parameters: Leave blank. 

• Working directory: This points to where all the Java files are 
located. 
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Fig. 3 Environment path 

NDK-BUILD CLEAN is used to remove all previously generated binaries. Use 
the following steps to configure it: 

1) Configure the NDK-BUILD CLEAN path: 

a) Follow the same steps as if configuring the NDK-BUILD path, except 
the parameter is set to “clean”. 

b) The final NDK-BUILD CLEAN configuration screen should look like 
Fig. 4. 
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Fig. 4 NDK-BUILD CLEAN configuration 

5. Create an Android Application 

This guide assumes that the user is well versed in using the Android Studio IDE 
to create an Android application. Therefore, a step-by-step guide on how to create 
an Android application has not been included. A simple Android application is 
provided as an example highlighting the functionality outlined in this report.  

A newly created Android application is shown is Fig. 5. 

 

Fig. 5 Android application 

The user can then add the ability to read in 2 integer numbers, as shown in Fig. 6. 
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Fig. 6 Java codes to add 2 integer numbers 

To do this, the user must set up a sequence to call a C function from an Android 
application: 

1) Create a native library Java class as shown in Fig. 7. This class resides in 
the “src “directory. This class includes an Android system call to load the 
library that was written in C and all the C function prototypes.  

 

Fig. 7 Native library Java class 
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2) Create the JNI directory as shown in Fig. 8, to store all related C source 
files and H header files: 

a) Select “app->New->Folder->JNI folder”. 

b) Select “Finish”. The “jni” directory should appear under the “app” 
directory. 

 

Fig. 8 JNI directory 

3) Create the JNI header file using the external tool JAVAH, as shown in 
Fig. 9: 

a) Select “NativeLib->NDK->javah”:  

Based on the Java class created earlier, a header file will appear under 
the “jni” directory that has the following naming convention. 

• PackageName: com_example_haovu_addtwonumbers 

• Followed by the NativeJavaClassname: NativeLib 

• Followed by the .h extension  

• Example: com_example_haovu_ addtwonumbers_NativeLib.h  

b) The newly created header file contains the Java native function 
prototypes with the following format: 

• JNIEXPORT 

• The function return type 
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• JNICALL 

• Java 

• Followed by the PackageName 

• Followed by the NativeJavaClassname 

• Followed by the FunctionName 

• Example: JNIEXPORT jint JNICALL Java_com_example_ 
haovu_addtwonumbers_NavtiveLb add (JNIEnv *, jobject, jint, 
jint) 

 

Fig. 9 JNI header file 

c) Under the “jni” directory, create a C source file (NativeLib_C.c), as 
shown in Fig. 10, to implement the native C functions: 

i) Select “jni->New->C/C++ Source File”. 

ii) Enter the filename and type. 

iii) Select “OK”. 
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Fig. 10 Create a C source file 

d) Implement the Java native C functions as shown in Fig. 11. 

 

Fig. 11 Java native C functions 
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e) Modify “build.gradle (Module:app)”: 

i) Inside the “defaultConfig” section, add the following pseudo code: 

sourceSets { 
       main{ 
               jni.srcDirs = [] 
           jniLibs.srcDir “src/main/libs” 
       } 
} 

f) Create an “Android.mk” makefile, shown in Fig. 12, under the “jni” 
directory to determine how to build the C code: 

i) Select “jni->New->File”. 

ii) Enter “Android.mk” as the filename. 

 

Fig. 12 Android.mk makefile 
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g) Create the “Application.mk” makefile, shown in Fig. 13, under the 
“jni” directory to tell the NDK what architecture it should build the 
shared library for:  

i) Select “jni->New->File”. 

ii) Enter “Application.mk” as the filename. 

 

Fig. 13 Application.mk makefile 

Note: This application.mk requests the NDK to build a shared library for all 
supported architectures. The following details how to build a shared library: 

1) Select “app->NDK->ndk-build”: 

• A “libs” directory that stores the shared library for all the architectures 
is automatically created. 

• All the supported architecture directories are created. 

• Under each architecture directory, a shared library for that particular 
architecture can be found. 
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6. Final Build and Run Android Application 

Perform the following steps to create the final build and run the Android 
application: 

1) Select “Build->Make Project”. 

2) Select “Run-> Run ‘app’”. 

7. Conclusion 

This guide summarizes all the necessary mechanisms and steps to guide a novice 
Android application developer to build an Android application that is capable of 
handling a high-intensive computation requirement.  
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